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Heat transfer correlations by symbolic regression
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Received 1 June 2005; received in revised form 22 April 2006
Available online 7 July 2006
Abstract

We describe a methodology that uses symbolic regression to extract correlations from heat transfer measurements by searching for
both the form of the correlation equation and the constants in it that enable the closest fit to experimental data. For this purpose we use
genetic programming modified by a penalty procedure to prevent large correlation functions. The advantage of using this technique is
that no initial assumption on the form of the correlation is needed. The procedure is tested using two sets of published experimental data,
one for a compact heat exchanger and the other for liquid flow in a circular pipe. In both situations, predictive errors from correlations
found from symbolic regression are smaller than their published counterparts. A parametric analysis of the penalty function is also
carried out.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

In the design, selection and control of thermal compo-
nents for industrial and commercial applications, it is
necessary to predict their performance under specific condi-
tions of operation. Though in theory this calculation can be
carried out from first principles by formulating the govern-
ing equations, complexities arising from factors like turbu-
lence, temperature dependence of properties, and the
geometry makes it difficult to achieve in practice. As a
result, most calculations are based on experimental data.
The information is compressed in the form of correlations
from which the heat transfer coefficient can be obtained.
Most commonly, correlations are developed in terms of
dimensionless groups like the Nusselt, Reynolds and Pra-
ndtl numbers; sometimes for greater generality geometrical
factors are also included. Assuming a functional relation-
ship between the groups with a certain number of free con-
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stants, a regression analysis to minimize the error between
predicted and experimental values is carried out to deter-
mine the appropriate values of the constants.

A disadvantage of this procedure is that predictive
errors in the heat transfer rate are normally larger than
the experimental uncertainties from which the correlation
was generated. Assumptions such as using average transfer
coefficients or constant property values [1] and the fact that
the error minimization function may have more than one
local minimum [2,3] are among the reasons for this loss
of accuracy. Another source of error is the specific form
of the correlation function assumed for the regression anal-
ysis. The functional form is selected on the basis of simplic-
ity, compactness and common usage [4], but cannot be
completely justified from first principles. There is usually
not much physics behind the choice of the form. Although
power laws are commonly used in heat transfer studies, a
variety of other forms have also been used [5], though it
is not obvious how the form should be chosen. As an exam-
ple, for heat exchangers Pacheco-Vega et al. [6] have shown
that different functional forms may predict performance
with more or less similar accuracy. It would thus be
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Nomenclature

Ar area ratio
a1, a2 penalty parameters
C set of constants
D inner diameter of pipe
F set of operators
f correlation function
Ff, Fj, FNu fitness function
g penalty function
G generation number
Gmax maximum number of generations
j Colburn j-factor
L length of pipe
Lf, Lj, LNu size of correlation
M population size
N number of experimental data sets
Nv number of variables
Nu Nusselt number

Pr Prandtl number
pc probability of crossover
pm probability of mutation
Qf, Qj, QNu penalized fitness function
Re Reynolds number
Sj, SNu variance of error
T terminal set
xj variable

Greek symbol
l dynamic viscosity of fluid

Subscripts and superscripts

e experimental value
p predicted value
t target value
w wall
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*

cos

*

* cos
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advantageous to have an algorithmic way to determine the
best correlation that fits experimental data without the
need to assume its functional form.

The genetic algorithm (GA) [7,8] is an optimization
technique based on stochastic, evolutionary principles that
is used to find global extrema of a given function. Genetic
programming (GP) [9] is a symbolic regression extension
that works with a set of possible functions to find the best
for a given set of data. Applications of GP to thermal engi-
neering are scarce: the correlations obtained by Lee et al.
[10] for critical heat flux for water flow in vertical round
pipes and Pacheco-Vega et al. [11] for artificial heat-
exchanger data are among the very few.

The aim of the present study is to describe a methodol-
ogy based on GP to develop heat transfer correlations that
can be used to predict the performance of thermal compo-
nents. Since compact forms of the correlations are to be pre-
ferred, the standard procedure will be modified by a penalty
function that weights against complicated forms. The pro-
cedure is described first. Then, two sets of published exper-
imental data, one corresponding to heat transfer in compact
heat exchangers and the other to heating and cooling of liq-
uids in pipes, are used to demonstrate the capability of GP
to find accurate correlations. The effect of the parameters of
the penalty function on the results is also analyzed.
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Fig. 1. Representation of function 5xcos(5x + 1) as (a) parse tree, and (b)
array.
2. Genetic programming

2.1. Description

GP is a soft computing search technique in which com-
puter codes, representing functions as parse trees, evolve as
the search proceeds. The objective is to extremize a certain
quantity called the fitness function. Developed originally to
automatically generate computer programs, it has been
used in a variety of applications, e.g., finance [12], elec-
tronic design [13], signal processing [14], and system identi-
fication [15], among others. GP is discussed in detail in the
monograph by Koza [9].

Compared to the GA [7,8], in GP functions take the
place of numbers in an attempt to find the best solution
to a particular problem by genetically recombining a pop-
ulation of individuals that portray candidate solutions.
This is achieved by using tree-structured representations
of functions; an example of the function 5xcos (5x + 1)
is shown in Fig. 1(a). Branch nodes may be operators
with one or two arguments (such as sin, cos, exp, log, +,
�, *, /, ^), or may be Boolean (such as AND, OR,
NOT) or conditional (IF–THEN–ELSE, etc.) operators.
Leaf or terminal nodes, on the other hand, are the variables
(xj, j = 1, . . .,Nv) in a particular problem, or constants to be
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Fig. 2. Crossover: parents are 5x(x + 1) and x(5x + 1), and offspring are
5x(5x + 1) and x(x + 1).
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determined. For our purposes we will use the set of
operators

F ¼ fþ;�; �; =;^g ð1Þ

for the branch nodes, where numerical values are returned
on application of each operator. The division operator, /, is
protected such that it is prevented from being singular if
there is a zero in the denominator [9]. The set of terminals
will be

T ¼ fxj;Cg; ð2Þ

where xj are the variables given as data, while C 2 R is a set
of constants which have to be determined as part of the
solution.

2.2. Computer representation

In coding the algorithm, the representation of functional
forms that maintains a correct syntax depends on the pro-
gramming language being used. Due to the natural way of
portraying these tree structures, GP was ordinarily coded
in LISP [9,16]. However, other object-oriented program-
ming languages like C or C++ have also been used with
an increased speed in the computations. We have coded
our algorithm in MATLAB which allows handling differ-
ent data-types in a straight-forward manner. Trees repre-
senting the correlations are stored as rectangular arrays.
We define the ‘‘size,’’ Lf, of the correlation to be the num-
ber of rows multiplied by the number of columns of the
smallest rectangular array representation. The array repre-
sentation of the function 5xcos (5x + 1) is shown in
Fig. 1(b) with Lf = 5 · 3 = 15.

2.3. Fitness and penalty

Since the objective is to minimize the variance of the
error between predictions and the data, it is natural to
define the fitness as the reciprocal of the variance so that

F f ¼
1

N

XN

i¼1

½f tðxjÞi � f pðxj;CÞi�
2

 !�1

; ð3Þ

where f t(xj) for i = 1, . . .,N, are target data, and fp(xj) for
i = 1, . . .,N, are the predicted values from candidate corre-
lations. In heat transfer applications, f is either transfer
conductances or a dimensionless form of the heat transfer
coefficients; xj for j = 1, . . .,Nv, are dimensionless groups
such as the Reynolds number, Prandtl number, and geo-
metrical parameters.

One problem with using the fitness directly as defined in
Eq. (3) is that it may result in correlations of complicated
forms with many terms. To prevent large correlation func-
tions and favor more compact ones, the fitness function can
be penalized according to the size of each correlation.
Though this can be done in many ways, we follow McKay
et al. [17] and define a penalized fitness as
Qf ¼ F f gðLf Þ; ð4Þ

where

gðLf Þ ¼
1

1þ exp½a1ðLf � a2Þ�
ð5Þ

is a sigmoidal penalty function with prescribed a1 and a2.
In Section 4 we will analyze the effect that a1 and a2 have
on the results.
2.4. Crossover and mutation

In crossover two parents interchange parts of their trees
to produce two offspring following a process of cutting and
grafting. The crossover points may be different in each par-
ent, as illustrated in Fig. 2. Taking the set of elements
located ‘‘below’’ a chosen operator and the operator itself
from each parent, crossover can be achieved by grafting
these into the other parent at the appropriate location.
Mutation is applied on a node-by-node basis by random
alteration of a branch or terminal node as illustrated in
Fig. 3. Note that when applying these procedures, one must
make sure that the resulting functions are syntactically
acceptable.
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Fig. 3. Mutation: before mutation function is 5x(5x + 1), and after
mutation is 5x/(5x + 1).
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2.5. Procedure

The steps are the following.

• Creation of population: For the first generation a set of
M correlations coded as parse trees is randomly gener-
ated from F and T. For the following generations, the
old population is used.

• Evaluation of fitness: For each member of the popula-
tion, the value of the fitness is calculated.

• Selection for reproduction: The probability distribution
for the next generation, on the basis of which parents
are selected for replacement, is calculated from the fit-
ness values. A number of selection strategies exist in
the literature, e.g., fitness proportionate or elitism [9],
among others. Here we use the so-called tournament
method since it guarantees diversity in the population
[18]. The method uses two parameters, a so-called
population gap representing the percentage of individu-
als with better fitness, and a tournament gap which pro-
vides the number of individuals randomly selected from
the population for reproduction.

• Application of genetic operators: GP guides the search by
applying the genetic operators crossover and mutation to
parents selected on the basis of their fitness function.
Once the parents are selected, crossover and mutation
are applied according to preselected probabilities pc

and pm, respectively.
• Determination of constants: During the search, the opti-

mum form of the correlation found at any iteration of
the algorithm may not have optimal values of constants
C. This may cause the search path to deviate from the
optimum as the search proceeds, and it may prevent
the convergence to the best possible correlation relative
to both functional form and the constants. Thus it is
necessary to complement the GP with an optimization
of the set of constants C. In the present work, this is
done using the GA and supplemented by local optimiza-
tion using the Nelder–Mead algorithm [19]. These are
applied periodically after a number of generations.

• Creation of new population: Once crossover and muta-
tion have been applied to the complete population, a
new population that keeps the fittest member of the pre-
vious generation is created.
The process is repeated until some criterion based on
convergence or maximum number of generations, Gmax,
is achieved. Since this is a probabilistic technique, every
run gives a slightly different answer. To understand this
inherent variation, it is useful to perform multiple runs
along with a statistical analysis of the results.

3. Compact heat exchanger data correlation

The procedure is now applied to data obtained from
experimental measurements. Heat exchangers are a com-
mon example of thermal components, and empirical corre-
lations have been proposed by Abu Madi et al. [20], Kim
et al. [21] and Wang et al. [22] for single-phase flow condi-
tions, and McQuiston [23] and Khartabil [24] for condens-
ing conditions.

We consider experimental data that were obtained and
reported by McQuiston [25] from a series of tests on a
fin-tube compact heat exchanger. This was a multi-
row multi-column heat exchanger with nominal size of
127 mm · 305 mm in which air was used as the over-tube
and water as the in-tube fluid. The focus of the study was
the air-side heat transfer which was reported in terms of
Colburn j-factors. High Reynolds-number turbulent flow
in the water side was used to yield the thermal resistance
of the air side only. Though the measurements covered a
wide range of operating conditions, i.e. dry surface, drop-
wise and film condensation, only the dry-surface data will
be considered here.

From measurement data, the correlation proposed by
McQuiston [23] is

j ¼ 0:0014þ 0:2618Re�0:4A�0:15
r ; ð6Þ

where j is the Colburn j-factor, Re is Reynolds number, and
Ar is a non-dimensional geometrical parameter represent-
ing an air-side area ratio.

To perform symbolic regression for these data, the fit-
ness function is defined as

F j ¼ ðSjÞ�1 ¼ 1

N

XN

i¼1

ðje
i � jp

i Þ
2

 !�1

; ð7Þ

where je
i , i = 1, . . .,N, are the measurements and jp

i ,
i = 1, . . .,N, are the predicted values from each of the M

correlations in the population. Here we seek a correlation
function and the corresponding constants that maximize
Fj (or minimize Sj). We choose: M = 100, Gmax = 800,
pc = 0.8, pm = 0.2, a1 = 0.2 and a2 = 30. The terminal sets
include the variables x1 = Re, and x2 = Ar. The population
and tournament gaps are 10% and 2, respectively. The
determination of constants is done every 10 generations,
and the procedure repeated 10 times.

Fig. 4 illustrates a typical evolution of the algorithm
with respect to generation number G. The two curves in
the figure correspond to the values of the unpenalized
and penalized fitnesses, Fj and Qj respectively, from the
best correlation in each generation. After 400 generations
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from Eq. (10): (d). Also shown are predictions of Eq. (6) [23]: (v).
Straight line is the perfect prediction.
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it is observed that both curves level off with values of Fj

being larger than those of Qj. This is to be expected since
Qj rejects good candidate correlations that are large in size.
A consequence of this is that though both curves follow
similar paths, at about G = 350 the Fj-curve decreases
while Qj keeps increasing. Since the algorithm keeps the
best correlation from the previous generation based on
Qj, rather than Fj, a correlation that has a large Fj but is
also large in size, may not be preserved by the algorithm.

The following are two examples of the correlations that
result from the algorithm:

j ¼ 1:82

103:81þ 0:0299Reþ Ar

; ð8Þ

j ¼ 66:39� 0:4456Ar

3881:61þ Re
: ð9Þ

Though these correlations are different in form, and
their sizes, Lj, are 10 and 16 respectively, their rms errors
in predictions of the j-factor are close. This multiplicity
of solutions in functional space was also noticed by
Pacheco-Vega et al. [11] using artificial data. After the pro-
cedure was run a number of times, a correlation with a
slightly more complex form and larger size, Lj = 24, but
better prediction is found to be

j ¼ 2205:32

1:39� 105 þ 24:16Reþ ArRe
: ð10Þ
Table 1
Comparison of RMS errors for heat exchanger

Prediction method Error (%)

McQuiston, Eq. (6) [23] 14.74
Eq. (8) 6.32
Eq. (9) 6.24
Pacheco-Vega et al. [3] 6.21
Eq. (10) 6.18
Table 1 shows a comparison of the rms percentage error
in j obtained from the GP-based correlations above with
the published counterparts. The errors indicated are in
descending order of magnitude. It is observed that, regard-
less of differences in accuracy, all the correlations found by
this method give a smaller error than that of Eq. (6). Also
shown in the table are the results of the correlation devel-
oped by Pacheco-Vega et al. [3] using global regression
with the same functional form as given by Eq. (6). Though
this global-regression-based correlation is the best possible
that can be obtained from the assumed functional form,
Eq. (10) is seen to give a slightly smaller error.

A comparison between the experimentally determined
j-factor and that predicted from Eq. (10) is illustrated in
Fig. 5. The predictions from Eq. (6) are also included as
a reference. The scatter in the predictions from the GP-
based correlation is much smaller.

4. Effect of penalty parameters

Though different penalty functions may be used to limit
the size of the correlations, one of the advantages of the
sigmoidal form in Eq. (5) is that, since it is bounded and
its denominator is non-zero, it prevents the fitness in Eq.
(4) from becoming either unbounded or singular and thus
avoids computational problems. However, the choice of
a1 and a2 may affect the results. With the other parameters
fixed to the values used before, we take the data set of
McQuiston [25] and vary a1 and a2 to analyze their effect
on the results. Three runs were made for each a1 and a2

value.
Fig. 6 shows the results when a1 is held constant and a2

is varied. Fig. 6(a) shows the penalty function vs. correla-
tion size with the result of each run also marked on it,
and Fig. 6(b) the fitness values of the results. a2 is a
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nominal size of the correlation that simply shifts the pen-
alty function horizontally. A larger a2 enables a larger cor-
relation size with a smaller error to be selected. The choice
of a2 is subjective in that a smaller error is to be preferred,
but at the expense of functional complexity.

Fig. 7 is for variable a1 and constant a2, with Fig. 7(a)
showing the penalty function and Fig. 7(b) the penalized
fitness function. It can be seen that a1 is a measure of the
slope of the penalty function and determines how strongly
jL
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a large functional form of the correlation is penalized. For
small values of a1, the penalty function changes smoothly
providing a gradually increasing rejection of large correla-
tions while for the large values the fitness curve shows a
jump, i.e. a sudden onset of rejection, which is not very
conducive to a smooth variation in correlation size during
the search procedure. Though the choice of a1 is subjective,
an intermediate a1 is appropriate for finding relatively com-
pact well-fitted correlations. By looking at its limiting val-
ues we can see that choosing a large a1 would be equivalent
to picking a maximum correlation size for which there is no
need of a penalty function. If, on the other hand, a1 is
small, then it is also equivalent to not choosing a penalty
function.

5. Pipe-flow data correlation

Experimental data for heating and cooling of liquids in
pipes were reported by Sieder and Tate [26]. These data
and the corresponding correlation are frequently used to
calculate heat transfer coefficients in laminar flow in
pipes during design calculations. Using three distinct oils
as working fluids, a total of 67 experimental runs were
reported. The experimental results included the Nusselt
Nu, Reynolds Re, and Prandtl Pr numbers, as well as the
viscosity ratio l/lw. Here l and lw are the fluid dynamic
viscosities calculated at the average and wall temperatures,
respectively. Also given were the length, L, and the inner
pipe diameter, D, of the concentric-tube heat exchanger
where the experiments were performed.

On assuming an exponent of 1/3 for Re, Pr and D/L, the
correlation developed graphically by Sieder and Tate [26] is

Nu ¼ 1:86Re1=3Pr1=3 l
lw

� �0:14 D
L

� �1=3

; ð11Þ

with a corresponding range of applicability. From the same
data, using the functional form of Eq. (11) and the same
exponent for D/L, a different correlation was produced
numerically by Levenspiel et al. [27]. Their correlation is

Nu ¼ 4:22Re0:288Pr0:243 l
lw

� �0:142 D
L

� �1=3

: ð12Þ

We apply the present algorithm to the data set of Sieder
and Tate [26] to find the best fit correlation. The parame-
ters chosen for the procedure are: M = 200, Gmax = 800,
pc = 0.8, pm = 0.2, a1 = 0.05 and a2 = 50. The values for
the population and tournament gaps are 10% and 2,
respectively. The variables are x1 = Re, x2 = Pr, x3 =
l/lw, and x4 = D/L. Determination of constants is per-
formed every 10 generations.

For each of the M correlations in the population, the
error in the Nusselt number between predictions and exper-
iments is calculated from

SNu ¼
1

N

XN

i¼1

Nue
i � Nup

i

Nue
i

� �2

; ð13Þ



Table 2
Comparison of RMS errors for liquids flow in pipes

Prediction method Error (%)

Sieder and Tate [26] 13.79
Levenspiel et al. [27] 11.19
Eq. (14) 10.69
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where Nue
i are the experimental, and Nup

i the predicted
values, for i = 1, . . .,N. The fitness function is thus defined
as FNu = (SNu)�1, and the penalized fitness as QNu =
(SNu)�1g(LNu), where g is given in Eq. (5). The procedure
was carried out 10 times, with the most frequent functional
form found being

Nu ¼ 11:28þ 3:81Re½1þ 8:49ðl=lwÞ�
Reðl=lwÞ � 0:1907Pr þ 12:89ðD=LÞ : ð14Þ

The predictions of Nu from Eq. (14), along with the
published correlations previously discussed, are summa-
rized in Table 2. The percentage error from the GP-
based correlation is better than those given by Eqs. (11)
and (12).

Fig. 8 is a graphical comparison between the predictions
from Eqs. (14) and (11). The accuracy in the predictions
from the GP-based correlation is in general better, mainly
in the low-value range of the Nusselt number. The price
paid for this accuracy, however, is the slightly increased
functional complexity; its size is LNu = 48 as compared to
LNu = 40 of Eqs. (11) and (12).

6. Conclusions

Correlations obtained from experimental data are com-
monly used in the estimations of the heat rate in thermal
components. Most often this reduction of experimental
data to correlations is based on first choosing a specific
functional form of the correlation for which the constants
are then determined. Choice of the form determines the
least error that can be obtained in the regression process.
Power laws are often used, though many other forms
appear in the literature. Since digital computers are com-
monly used in heat rate calculations, it does not appear
to be advantageous to have a simpler form of a correlation,
as long as it is not unreasonably complex. In fact, to a cer-
tain extent accuracy in predictions is a more desirable goal
than just simplicity of the correlation.

Symbolic regression is a procedure to find the form of
the best-fitting correlation as well as the constants in it,
and genetic programming offers a way to carry it out.
The major virtue of the method is that no initial assump-
tion of the functional form is needed. Since extremely large
correlations may otherwise be generated, we have added a
penalty function to the usual fitness function to prevent this
from happening. We have demonstrated the application of
this method using published data from two different exper-
iments, and the resulting correlations, though slightly more
complex than those generated from the traditional
approach, have smaller predictive errors.
Acknowledgements

We acknowledge the support of the late Mr. D.K.
Dorini and BRDG-TNDR for the activities in the Hydro-
nics Laboratory. A.P.-V. also wishes to thank PROMEP
for financial support for a Visiting Professorship under
Grant PTC-68.
References

[1] A.J. Pacheco-Vega, Simulation of Compact Heat Exchangers Using
Global Regression and Soft Computing, Ph.D. Dissertation, Univer-
sity of Notre Dame, Notre Dame, IN, April 2002.

[2] A. Pacheco-Vega, G. Dı́az, M. Sen, K.T. Yang, R.L. McClain, Heat
rate predictions in humid air–water heat exchangers using correla-
tions and neural networks, ASME J. Heat Transfer 123 (2) (2001)
348–354.

[3] A. Pacheco-Vega, M. Sen, K.T. Yang, Simultaneous determination
of in- and over-tube heat transfer correlations in heat exchangers
by global regression, Int. J. Heat Mass Transfer 46 (6) (2003) 1029–
1040.

[4] S.W. Churchill, The art of correlation, Ind. Eng. Chem. Res. 39 (6)
(2000) 1850–1877.

[5] F.P. Incropera, D.P. DeWitt, Fundamentals of Heat and Mass
Transfer, John Wiley & Sons, New York, NY, 2002.

[6] A. Pacheco-Vega, M. Sen, K.T. Yang, R.L. McClain, Genetic-
algorithm-based-predictions of fin-tube heat exchanger performance,
in: J.S. Lee (Ed.), Proceedings of the Eleventh International Heat
Transfer Conference, 6, Taylor & Francis, New York, NY, 1998, pp.
137–142.

[7] J.H. Holland, Adaptation in Natural and Artificial Systems, Univer-
sity of Michigan Press, Ann Arbor, MI, 1975.

[8] D.E. Goldberg, Genetic Algorithms in Search, Optimization and
Machine Learning, Addison-Wesley, Reading, MA, 1989.

[9] J.R. Koza, Genetic Programming Paradigm, On the Programming of
Computers by Means of Natural Selection, MIT-Press, Cambridge,
MA, 1992.



W. Cai et al. / International Journal of Heat and Mass Transfer 49 (2006) 4352–4359 4359
[10] D.-G. Lee, H.-G. Kim, W.-P. Baek, S.H. Chang, Critical heat flux
prediction using genetic programming for water flow in vertical round
tubes, Int. Commun. Heat Mass Transfer 24 (7) (1997) 919–929.

[11] A. Pacheco-Vega, W. Cai, M. Sen, K.T. Yang, Heat transfer
correlations in an air–water fin-tube compact heat exchanger by
symbolic regression, in: Proceedings of the 2003 ASME International
Mechanical Engineering Congress and Exposition, Washington, DC,
November 2003, IMECE2003/HTD-41977.

[12] S.-H. Chen, C.-H. Yeh, Toward a computable approach to the
efficient market hypothesis: an application of genetic programming,
J. Econ. Dyn. Control 21 (1996) 1043–1063.

[13] J.F. Miller, D. Job, V.K. Vassilev, Principles in evolutionary design of
digital circuits—part 1, Gen. Program. Evolv. Mach. 1 (2000) 7–35.

[14] K. Uesaka, M. Kawamata, Synthesis of low-sensitivity second-order
digital filters using genetic programming with automatically defined
functions, IEEE Signal Process. Lett. 7 (4) (2000) 83–85.

[15] V. Arkov, C. Evans, P.J. Fleming, D.C. Hill, J.P. Norton, I. Pratt, D.
Rees, K. Rodriguez-Vazquez, System identification strategies applied
to aircraft gas turbine engines, Ann. Rev. Control 24 (1) (2000) 67–81.

[16] S. Sette, L. Boullart, Genetic programming: principles and applica-
tions, Eng. Appl. Artificial Intell. 14 (1) (2001) 727–736.

[17] B. McKay, M. Willis, G. Barton, Steady-state modelling of chemical
process systems using genetic programming, Comput. Chem. Eng. 21
(9) (1997) 981–996.

[18] D.E. Goldberg, K. Deb, A comparison of selection schemes used in
genetic algorithms, in: G.J.E. Rawlins (Ed.), Foundations of Genetic
Algorithms, Morgan Kaufmann, 1991, pp. 69–93.
[19] J.A. Nelder, R. Mead, A simplex method for function minimization,
Comput. J. 7 (1965) 308–313.

[20] M. AbuMadi, R.A. Johns, M.R. Heikal, Performance characteristics
correlation for round tube and plate finned heat exchangers, Int.
J. Refrig. 21 (7) (1998) 507–517.

[21] N.H. Kim, B. Youn, R.L. Webb, Air-side heat transfer and friction
correlations for plain fin-and-tube heat exchangers with staggered
tube arrangements, ASME J. Heat Transfer 121 (3) (1999) 662–
667.

[22] C.C. Wang, K.-U. Chi, C.-J. Chang, Heat transfer and friction
characteristics of plain fin-and-tube heat exchangers, part II: Corre-
lation, Int. J. Heat Mass Transfer 43 (15) (2000) 2693–2700.

[23] F.C. McQuiston, Correlation of heat, mass and momentum transport
coefficients for plate-fin-tube heat transfer surfaces with staggered
tubes, ASHRAE Trans. 84 (1) (1978) 294–309.

[24] H.F. Khartabil, R.N. Christensen, An improved scheme for deter-
mining heat transfer correlations from heat exchanger regression
models with three unknowns, Exp. Thermal Fluid Sci. 5 (6) (1992)
808–819.

[25] F.C. McQuiston, Heat, mass and momentum transfer data for five
plate-fin-tube heat transfer surfaces, ASHRAE Trans. 84 (1) (1978)
266–293.

[26] E.N. Sieder, G.E. Tate, Heat transfer and pressure drop of liquids in
tubes, Ind. Eng. Chem. 28 (12) (1936) 1429–1435.

[27] O. Levenspiel, N.J. Weinstein, J.C.R. Li, A numerical solution to
dimensional analysis, Ind. Eng. Chem. 48 (2) (1956) 324–326.


	Heat transfer correlations by symbolic regression
	Introduction
	Genetic programming
	Description
	Computer representation
	Fitness and penalty
	Crossover and mutation
	Procedure

	Compact heat exchanger data correlation
	Effect of penalty parameters
	Pipe-flow data correlation
	Conclusions
	Acknowledgements
	References


